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The thermal relaxation times are characteristic parameters of deep levels which
can be calculated by the analysis of admittance data. The contributions of these char-
acteristic parameters can be sharp or broadened. If sharp contributions are assumed
the analysis procedure is called a parametric method. This procedure leads to a well-
posed inverse problem but additionally the unknown number of discrete contributions
must be determined. For broadened contributions a honparametric method is used.
This procedure leads to an ill-posed inverse problem but the number of contributions
is determined automatically. Both kinds of analysis methods are compared with a
Monte Carlo study on simulated admittance data. In addition, the parametric and
nonparametric procedures are used to analyze experimental admittance data in order
to obtain the deep levels and electrical properties of a semi-insulating GaAs Schottky
diode. (© 1999 Academic Press

Key Wordsill-posed problem; Tikhonov regularization; parametric method; non-
parametric method; admittance spectroscopy.

1. INTRODUCTION

Material parameters of Schottky diodes can be calculated from admittance date
Characteristic parameters are the resistivity and the dielectric constant of the semiconc
material, the potential barrier of the metal-semiconductor interface, the energy of the
gap between the valence and the conduction band of the semiconductor, and the rela
times of the energy levels within this band gap. The main topic of this article is the calcule
of these relaxation times for deep levels.

From the view of solid state physics the contributions of the relaxation times shc
be sharp for single crystal material: All deep levels which originate from the same 1
of crystal defect have the same characteristic relaxation time. But for real crystals t

139

0021-9991/99 $30.00
Copyright© 1999 by Academic Press
All rights of reproduction in any form reserved.



140 WINTERHALTER ET AL.

contributions can be broadened due to the influence of a slightly varying local environm
of the deep levels. This local influence leads to slightly different relaxation times. T
reason for variations in the local environment can be twofold: Due to local interaction
different lattice defects and due to the influences introduced by the experimental meth

Local interactions depend strongly on the distance between the different kinds of pc
defects. Even in the case of a regular distribution the local distances will vary slight
One reason for this is the different concentration for each type of defect. Therefore,
overlapping of a certain deep level with different energy levels results in different relaxati
times. This overlapping effect is stronger if the surrounding defects have a small actival
energy. In this case, the corresponding Bohr radius is of the order of the distances betv
the defects. In addition, a macroscopic strain exerted to the material could induce a fur
broadening of the relaxation times.

Experimental broadening of the contributions of deep level is caused by the influence
the applied measurement technique on the local environment. If the electric field inducet
an applied bias voltage varies in the Schottky diode the defects will show different emiss
rates depending on their position in the Schottky junction according to the Poole—Frer
effect [2]. Further broadening is introduced by the influence of the so-called Debye |
connecting the neutral with the depletion region of a diode. Defects in the Debye tail hi
different relaxation times [3].

As a matter of principle all deep levels are subjected to broadening effects, but in sc
cases they can be neglected and the corresponding levels can be characterized by
relaxation times. But if these effects are essential the deep levels must be characterize
a broad distribution of their relaxation times.

According to the sharp and broadened contributions there are two classes of data ane
methods—the parametric and the nonparametric method. With the parametric method
crete parameters for each relaxation time of a deep level are estimated from experim
data. This is the numerical approach of Macdonald [4]. In nonparametric methods a cor
uous distribution for the relaxation times of deep levels is estimated. Such a honparam
method was presented in our previous article [1].

In this paper we compare these two different data analysis methods. By this compar
the reliability of their estimated results can be judged. This is not only restricted to t
analysis of admittance data but can also give an useful insight for general data anlysis
parametric and nonparametric methods.

2. MODELS FOR THE ADMITTANCE OF A SCHOTTKY DIODE

The electric characteristics of a Schottky diode can be represented by an equiva
circuit consisting of resistances and capacitances. Figure 1 shows the equivalent circu
introduced previously [1]. This circuitis especially adapted to high resistivity semiconduc
materials because the semiconductor bulk is taken into account.

In our previous article the equivalent circuit is discussed in detail. A short motivation is
follows: The first part in the equivalent circuit (marked with) is due to the conductivity
of the depletion region represented by the resi®grand due to the charge separating
effect of this region represented by the capad@gs. The influence of the deep levels is
represented by the series connections of resi®pend capacitie€; according to Losee
[5]. The admittance of the first part is denoted¥ifw). In the second part of the equivalent
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FIG. 1. Equivalent circuit of a Schottky diodeZ; is the impedance of the depletion region angthe
impedance of the semiconductor material and the contact on the semiconductor.

circuit (marked withZ,) the resistanc®g, and capacitanc€g, of the semiconductor bulk
are taken into account. In addition, the resid®gs stands for the ohmic back contact of the
semiconductor. Both parts together yield the expression

1 1 -1
Y(w) = (Yl @ + Gor 4 10Con + Ros> 1)

for the complex admittance of a Schottky diode in dependence on the frequehtthis
expression the resistan&y; is replaced by its conductivitgg, = Rgzl.

The productR, C; = 7; leads to the thermal relaxation time of the corresponding de
level. This relaxation time has the well known dependence on the activation eaé&igy
and the cross sectian of the deep level,

1/2 3/2
()2, e @
! 4\ mg h? I ’

In the above equatioks denotes the Boltzmann constahtPlanck’s constantn} the
effective mass of an electron in the crystal lattice of a semiconductorT ahd absolute
temperature.

For the admittanc¥,; (w) of the first part, which contains the influence of the deep level
two different approaches can be introduced. In the first approach the contributions of
levels are supposed to be discrete. In this case the real- and imaginary paits)dfiave
the form [6]

2T

1+ w22 (3a)

R(Y1(@)) = Go1 + Z

S(V1() = wCo1 + Z (3b)

1—|—a)2r2 a

where thg h; } denote the discrete weights of the deep levels. Each deep level is paramet
by 7j andh; and therefore this approach is callggrametric Further, the resistandgy; is
replaced by its conductivitg, = Rgll.

The contributions of the deep levels are supposed to be continuous in the nonparan
approach. That is, the relaxation timesre subjected to a continuous distributiogr).
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The sums in Egs. (3a) and (3b) must be written in the continuous limit as integrals. In t
caseY,(w) has the form

Tmax
2

sn(Yl(w))ZGoﬁ/#a;fzrh(r)d(lnr), (4a)
S(Yl(a)))zwcm—i—/ﬁth(t)d(lnt). (4b)

Tmin

The additional factor in both integrals appears because of the logarithmic scale for tl
integration variablet = r d(In 7). The notation Irr means exactly lxr /7g) with p=1s

in order to get a dimensionless argument for the logarithm. This approach is naled
parametrichecause the contributions of the deep levels are given by an arbitrary continu
distributionh(). For discrete contributions of the relaxation times the distributian is
expected to show sharp peaks. A characteristic relaxation time of this distribution car
estimated by the average

fpeakrzh(r) d(n1)
i = (5)
fpeakrh(r) d(int)
and the corresponding weight by
hi = / th(r)d(n1). (6)
peak

Aninteresting point is the temperature dependence of the additional para@gtess;,
Co2, Goz, andRy3. The parameterSy;, Co, andRy3 are expected to be nearly independen
of the temperature whereas the two remaining parameters should have a characte
temperature dependence according to [7]

Gor ~ Tze_EVO/kBT, (7a)
Goz ~ T2e Eo/2keT (7b)

V) is the potential of the barrier at the metal-semiconductor interface trelelementary
charge.Eg is the energy of the band gap between the valence and the conduction banc

Within the nonparametric approach the contributions of the deep levels are assul
to be given by a continuous distributidr{z). Estimating this distribution functioh(z)
numerically as outlined in the next section one has, however, to discretize the integral
(4a), (4b), obtaining, e.g.,

R(Y1(w)) = Gor + Z Z TN, (8)

I(Yi(w)) = wCo1 + Z th(t)wi, (8b)

1+ 22
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where the{w;} are weights due to the discretization and fhg are fixed points with
constant spacing within the rang&in, Tmax Of the distribution.

Thus, there seems no great difference between the two approaches; the models f
functionsfi(Y1(w)) and3I(Y1(w)), given in (3a), (3b) for the parametric and in (8a), (8b) fo
the nonparametric approach look very similar. There is, though, the difference that in
parametric approach the positions of the contributigniselong to the unknowns, which
have to be estimated, whereas in the nonparametric approach they are taken to be fixe
this is not of great relevance. If we would use in both approaches the least squares estir
we had only to choose the appropriate minimization routine for the determination of
estimates, either a nonlinear or a linear one. The main point is that the two models
the measurable quantities differ in the number of unknown parameters and therefo
the mathematical properties of the map between unknowns and data. One has only
parameters in the parametric approach, alot and in principle an infinite number of unknc
in the nonparametric approach. The number of unknowns, however, has a strong influ
on the reliability of the estimation. This can be easily seen, if one writes the relation betw
data and unknowngh(z;)} in (8a), (8b) as

Y| = ZKiih(n), i=1....,N, Y =%RM(w)), 3Mi(w)), resp (9)

The kernel functions in (4a), (4b) taken as operators in a function space have a spectri
singular values which converges to zero. Their discrete version, combined into the m
K in (9), is therefore ill conditioned. This is most drastically seen in the underdetermi
situation: The more the number of unknowns exceeds the number of data points, the
zeros are in the spectrum of the singular values of the midtrixurthermore, the worse the
condition of the matrix is, the larger in turn the confidence regions of the estimated va
become.

The condition of the matrix is thus of utmost importance for the estimation and for
decision which type of estimator one has to use. In the parametric case one assumes
matrix is not ill conditioned; one may use the least squares estimator. In the nonparan
case the ill-conditioning of the matrix is obvious; the least squares estimator turns ol
be not consistent. One has to use another estimator, e.g., the estimator provided by
regularization procedure. In such estimators one has to introduce a prior knowledc
order to replace the information which is destroyed by the ill-conditioning of the mat
[8].

Thus the Egs. (3a), (3b) and (4a), (4b) constitute different mathematical models for
measurable quantiti®¥(Y1(w)) and3J(Y1(w)) and the inference of the unknown parametel
resp. of the unknown function from a finite set of data needs different estimators.

The assumptions about the experimental errors of the data also play a crucial role i
estimation. They influence the mathematical expression of the estimator and in turr
estimates and their confidence regions [9]. A precise formulation of the error model a
careful determination of the uncertainty regions of the estimates are indispensable in or
have a measure for the reliability of the estimation. An ill-conditioning of the map betwe
unknowns and data is immediately revealed by studying the size of the confidence reg
Using the least squares estimator in the ill-conditioned case, e.g., leads to huge uncer
regions for the estimates, because the size of these regions are inverse proportional
singular values.
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3. METHODS OF DATA ANALYSIS

In the data analysis the additional model parame@gisGo1, Co2, Go2, andRyz and the
contributions of the deep levels are estimated from measured admittance data. The me
of this analysis depends on the approach used to model the deep levels.

3.1. Parametric Method

In the parametric approach the discrepancy

[N

ZT —RY @]+ 5 R = 3(Y@)]®  (10)
i—1 M

—2 R
iz1 N2

of the measured admittance datd and the calculated oneé(wi) is minimized with
respect to the additional model parameters and with respect to the parameters of the dis
contributions of the deep levels given fiyandh; . The admittance data(w;) are calculated
by Eq. (1) with the discrete approach in Egs. (3a) and (3b). The valisethe number of
measured data angd; andn,; are the experimental errors. These experimental errors a
supposed to be relatively constant and Gaussian distributed. This meamns; thafi (Y,")
andnz; ~ (Y.

The discrepancy in Eq. (10) depends on the numbenf discrete contributions of
the deep levels. This numberis unknown and must additionally be determined. It mus
be large enough in order to take all relevant contributions into account but it must a
be small enough in order to avoid additional and incorrect contributions. These additic
contributions would reduce the discreparByonly by adapting the noise on the admittance
data but would not lead to reasonable contributions of deep levels.

A possible method for the determination of the number of discrete contributions is 1
application of a statistical test. A test consists of a rule that makes a decision to accej
reject a hypothesis on the basis of measured data.

The hypothesis is in our case that the number of discrete contributions is equalte
hypothesis is accepted if

[Dy(n+ 1) — Dy(n)|
Dy () <a (12)

and rejected otherwis®y (n) denotes the discrepancy in Eqg. (10) in dependence on tl
numbern of discrete contributions. The term on the left hand side of the inequality (1
measures the relative decrease of the discrepantisifncreased tm + 1. « is an upper
limit for this decrease.

This relative decrease is significant if it is larger tlaThen, the hypothesis is rejected.
If the relative decrease is smaller tharit is taken to be insignificant and the hypothesis
is accepted. With this test the numbrers increased gradually until the above inequality
is fulfilled. We have chosen =1072. This value of« is small enough in order to take
significant contributions of deep levels into account and it is large enough to prefrent
pretending too many additional contributions. It should be mentioned that the chaice ¢
depends on the investigated problem.
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3.2. Nonparametric Method

In the nonparametric approach a continuous distribution of the relaxation tinmest
be calculated from measured dda. This case was discussed extensively in our prev
ous article [1]. The calculation leads to a so-called ill-posed inverse problem [10]. Eve
small noise on experimental admittance data has a large influence on the continuous ¢
bution. Therefore, special methods are needed to calculate a continuous distribution
experimental data. Such methods are called regularization methods [11]. In Tikhon
regularization method the functional

m 1 m
vy =Y z [R(YT) = RY @] *+ D ? [3(Y") = 3(Y (@)
i=1 /Ll i=1

A /[th(r)]zd(ln 7) (12)

Tmin

is minimized with respect to the additional model parame@iis Go1, Co2, Goz, and Rz
and with respect to the functiorh(z). This functional consists of three terms. The firs
and the second term are the discrepancy of the measured data comparable to Eq. (
the parametric method. The difference is that the values for the admittance are calcu
according to Egs. (4a) and (4b) instead of Egs. (3a) and (3b). These two terms forc
calculated values to be compatible with the experimental ones. The third term is the
called regularization functional with the regularization paramgterhis term leads to a
stable estimate of the functiatn(z) without large irregular fluctuations. The regularizatior
parameter which controls the stability is determined with the self-consistent (SC) met
[12].

In the nonparametric method the number of contributions is calculated automatically
the number of peaks in the continuous distribution. Discrete deep level contributions
be easily calculated from the continuous distribution by Egs. (5) and (6).

Although the parametric and nonparametric methods are in principle different there
similarity between these methods. Besides the minimization of a discre@acy or of
a functionalV (1), both methods include an additional criterion for the estimation of the
solution. In the parametric method this criterion concerns directly the number of disc
contributions, whereas in the nonparametric method the criterion for the determinatio
A deals with the degree of stability for the functioh(t).

4. RESULTS FOR SIMULATED DATA

In this section the parametric and nonparameteric method for the analysis of admitt
data are compared with a Monte Carlo study. The comparison is carried out for three diffe
cases of deep level contributions:

(1) only discrete contributions,
(2) only continuous contributions, and
(3) discrete and continuous contributions simultaneously.
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In a preliminary step a set of hypothetical model parameters

Cor = 1.0-1071°F,
Gop=10-108Q1,
Coz=1.0-10711F,
Goz =10-10°Q71,

and

Ros = 1.0 k2

and hypothetical discrete and continuous relaxation time contributions are used to gen
samples of admittance data for each of the three cases addressed above according to E
For this purpose, 200 values for the angular frequeneyere chosen from a logarithmic
scaled interval [13, 10’ s71]. The experimental error was simulated by adding a Gaussie
random number corresponding to a relatively constant error of 1%, which is compara
to the noise in experimental data. In the Monte Carlo study for each case 1000 sample
admittance data are simulated. The samples differ only in the realization of the Gaus
random number.

For the 1000 samples the parametric and the nonparametric analysis method is apy
The results calculated from each sample are averaged over the results of the total nu
of samples. Thus, representative solutions can be calculated. With the parametric me
averaged values of the paramet€gs, Go1, Co2, Go2, Roz, the number of discrete contri-
butionsn, and averaged values of the discrete contributigrandh; are estimated in the
Monte Carlo study.

With the nonparametric method the averaged values of the model para@gte@s;,
Co2: Go2, Roz are estimated and the average of a continuous distribution of the deep le\
is calculated. From this continuous distribution averaged discrete values for the relaxa
timest; and the corresponding weighisare estimated with Egs. (5) and (6).

(1) Discrete contributions. Figure 2 shows the simulated admittance data and the thr
hypothetical discrete contributions with

11=10%s  h; =02sQ7 %
7, =10"%s, h,=03sQ7 %,

and
73=10°%s,  h3=0.6sQ L

With the parametric method the correct amounhef 3 discrete contributions was de-
termined in 92% of the 1000 simulated samples. In 8% of all simulated samples a wr¢
amount ofn =4 contributions was determined using the test procedure described in
previous section. The corresponding estimated contributions are depicted in Fig. 3.
results calculated with the parametric method show only very small deviations from
originally given values for the correct numbee= 3. For the results estimated with=4
larger deviations are indicated by the error bars.
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FIG. 2. (a) Simulated admittance data, %(Y); @, I(Y); and (b) the hypothetical discrete contributions of
deep levels used for a Monte Carlo simulation.

In Fig. 4 the continuous distribution estimated with the nonparametric method is sha
The averaged estimated deep level parameters and the averaged estimated additional
parametersCo;, Go1, Co2, Go2, and Ry3 are shown in Tables | and Il. The deep leve
contributions are nearly as accurate as the ones calculated with the parametric methot
results for the additional parameters agree very well with the hypothetical values for |
analysis methods.

The disadvantage of the parametric method is that additional deep level contribut
can be pretended which are not present in the data. Thus, the determination of the nt
of contributions is a crucial point in the parametric method, because additionally preter

TABLE |
Estimated Parameters of the Parametric and the Nonparametric
Method for Discrete Deep Level Contributions

Parametrign = 3)

Parametrign =4)

Nonparametric

Co1 [107° F] 0.99+0.10 0.9740.12 0.95+0.07

Go [108 Q7Y 1.04+0.001 0.999 0.002 0.999 0.002
Co2 [10711 F] 1.0+£0.01 1.0+0.01 1.006t 0.008
Go2 [10°° Q7Y 1.001+0.009 1.0£0.01 1.01£0.005
Ros [K€2] 1.04+0.005 1.6+ 0.005 0.995t 0.009
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FIG. 3. Estimated discrete contributions in the Monte Carlo simulationnéa)3 contributions (92%) and
(b)n =4 contributions (8%). The vertical lines mark the hypothetical discrete values and the error bars characte
the estimated ones. The arrow point at error bars which are too small to be seen. The left and right dashed
mark the borders where the solution is unique.

contributions can worsen the results of the relevant contributions. In contrast to this, v
the nonparametric method the correct number of deep level contributions was always
termined.

A disadvantage of the nonparametric method can appear if contributions are so ¢
together that the regularization procedure can only resolve one broader peak. The pare
ric method could better deal with this situation in the case when the number of discr
contributions is known.

TABLE Il
Estimated Deep Level Contributions of the Parametric and the Nonparametric
Method for Discrete Deep Level Contributions

Parametriqgn = 3) Parametriqn =4) Nonparametric

7 [s] hi [107° s/ 2] % [s] hi [107° 5/ 7 [s] hi [10° s/ €]

(1.0+0.5)-10°° 0.2+0.03 (82+3.7)-10° 015+0.07 (1.02+0.2)-10°° 0.15+0.02

(1.01+0.09-10* 0.3+0.02 (8.2+29)-10° 0.28+0.05 (0.97+0.4)-10* 0.33+0.02

(1.04£0.0)-10° 0.6+£0.008 (7.24+2.6)-10* 0.45+0.2 (1.0£0.0)-10°  0.624+0.07
(8.2+0.8)-10*  0.25+0.26
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FIG. 4. The distributionzh(z) estimated with the regularization procedure in the Monte Corlo simulatiol
The vertical lines mark the hypothetical discrete values and the error bars characterize the estimated values
distribution. The left and right dashed lines mark the borders where the solution is unique.

(2) Continuous contribution. Figure 5 shows the simulated admittance data and t
hypothetical continuous distribution for the relaxation times. This distribution was cho
to be gaussian on a logarithmic scale with mean valuk052 and variance 2.0. With the
parametric method the number of different relaxation time contributions was determine
n=4 (32%), 5 (66.5%), and 6 (1.5%). The corresponding estimated discrete contribut
using the parametric method are depicted in Fig. 6. Although the estimated discrete cc
butions are located near the continuous hypothetical distribution, their continuous char
cannot be assessed with the estimated results of the parametric method.

The continuous distribution estimated with the nonparametric method is shown in Fi
The nonparametric method yields a very accurate estimation of hypothetical distribu
The averaged estimated model parameters are shown in Tables llla and lllb. As ir
previous case these additional model parameters are estimated very well for both an:
methods.

TABLE llla
Estimated Parameters of the Parametric Method for a Continuous
Deep Level Contribution

Parametrign =4) Parametrign =5) Parametriqn = 6)

Co1 [107°F] 1.0+£0.002 10+0.01 0995+ 0.004
Go: [108 Q71 1.0+0.002 0999+ 0.008 0982+ 0.02

Coz [107** F] 0.999+ 0.001 1040.002 10+0.001
Goz [10°° Q7Y 0.999+0.001 10+0.003 10+0.002

Ros [k€2] 1.0+£0.004 10+0.004 1001+ 0.005
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TABLE llib
Estimated Parameters of the Nonpara-
metric Method for a Continuous Deep Level
Contribution

Nonparametric
Co1 [107° F] 0.99+0.01
Go: [1078 Q71 1.0+ 0.002
Co2 [LO1 F] 1.0+ 0.002
Gp2 [10°¢ Q7Y 1.0+0.002
Ros [KQ] 0.997-+ 0.008

(3) Discrete and continuous contributions simultaneoushigure 8 shows the simulated
admittance data and the hypothetical discrete and continuous deep level contributions.
discrete contributions are taken from the first case and the continuous one is taken f
the second case.The number of estimated discrete contributiors392.5%), 6 (3.1%),

7 (4.1%), and 8 (0.3%) using the parametric method in the Monte Carlo simulation. T
corresponding estimated discrete contributions are depicted in Fig. 9.
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FIG. 5. (a) Simulated admittance data, R(Y); @, 3(Y); and (b) the hypothetical continuous distribu-
tion th(z) of relaxation times used for a Monte Carlo study.
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FIG. 6. Estimated discrete contributions in the Monte Carlo studynay (32%), (b)n=5 (66.5%), and
(c) n=6 (1.5%) contributions. The curve marks the hypothetical continuous distribution and the error |
characterize the estimated discrete values. The arrow points at an error bar which is too small to be seen. T
and right dashed lines mark the borders where the solution is unique.

The solution estimated with the nonparametric method is shown in Fig. 10. The res
for the additional model parametetsi, Go1, Co2, Go2, andRy3 are nearly the same as in
the two cases before. For this reason, they are not shown separately.

The results for the deep level contributions are comparable with the results in the pre\
case. Fon=5 andn =8 determined contributions large deviations are observed for t
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FIG. 7. The distributionzh(z) estimated with the regularization procedure in the Monte Carlo simulation
The full line characterizes the hypothetical distribution and the error bars the estimated values of the distribu
The left and right dashed lines mark the borders where the solution is unique.
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FIG. 8. (a) Simulated admittance data,R(Y); @, 3(Y); and (b) the hypothetical discrete and continuous
contributions of deep levels used for a Monte Carlo simulation.
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FIG. 9. Estimated discrete contributions in the Monte Carlo study.n(@)5 (92.5%), (b)n=6 (3.1%),
() n=7 (4.1%), and (dnh =8 contributions (0.3%). The curve shows the hypothetical continuous distributi
and the vertical lines mark the hypothetical discrete contributions. The error bars characterize the estimated \
The arrows point at error bars which are too small to be seen. The left and right dashed lines mark the bc
where the solution is unigue.

results estimated with the parametric method. Even the three discrete contributions ar
resolved correctly in this case. Foe= 6 andn = 7 at least the discrete contributions are wel
estimated, which happens only in 7.2% of all simulated data. But as in the previous ca
completely continuous contributions the continuous part is only poorly characterized.

In contrast to these results the solution is well estimated with the nonparametric met
The continuous part of the whole hypothetical contribution is estimated very accurately
the estimations of the weights of the discrete part are nearly the same as in the first ce
pure discrete contributions.

5. RESULTS FOR MEASURED DATA

The admittance of a GaAs Schottky diode was measured for several temperatur
dependence on the frequenoy The measurement details are pointed out extensively
the previous articles [1, 13]. Here the measured admittance data were used to focus c
differences of the parametric and nonparametric approach for their analysis.

As an example Fig. 11 shows the admittance data measured for a temperat@etb&6
estimated discrete contributions using the parametric method, and the estimated contil
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FIG. 10. The distributionzh(z) estimated with the regularization procedure in the Monte Carlo simulation
The vertical lines mark the hypothetical values for the discrete contributions and the error bars characterize
estimated values of the continuous distribution. The left and right dashed lines mark the borders where the sol
is unique.

distribution using the nonparametric method. The parametric method produced seven
crete contributions and the nonparametric method a continuous distribution with four bra
peaks. The comparison leads to the problem of judging the accuracy of the results of
method. If a continuous distribution is assumed then the parametric analysis could no
solve the peaks below=10"*s. Furthermore, the broad distribution betweea 10~ s
andt =10"'s is represented by a set of four discrete relaxation times. If on the contra
sharp relaxation times are assumed then the nonparametric method could not resolve
discrete structure correctly.

To distinguish between the results of the different methods the analysis was perforr
for different temperatures to obtain the Arrhenius plots (Fig. 12) for the relaxation tim
of the levels. In order to calculate the activation energies and cross sections the poin
the Arrhenius plot must be related to straight lines. The following seven deep levels w
determined with the parametric method:

(1) AE; = (0.87+0.03 eV, oy = (7.0+£9.6) - 10 " cn?
2) AE, = (0.76+£0.04 eV, o, = (43+6.2)-102cn?
(

3) AE3 = (0.76+0.04) eV, o3= (1.3+2.0)-10"cn?
3)

4) AE4 = (0.77+£0.05 eV, o4 = (6.94+122)-10 Mcn?
(4)

(5) AEs = (0.77+£0.05 eV, o5=(3.0+£5.7) 10 Pcn?
(6) AEg = (0.74+0.04 eV, o= (3.1+4.8)-10Pcn?
(7) AE; =(0.62+£0.09 eV, o7=(3.1£9.9) 10 *cn?.
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FIG. 11. (a) Measured admittance data for a temperature o€6@, 9% (Y); @, 3(Y). (b) The curve is the
continuous distribution estimated with the nonparametric method and the vertical lines represent the di
contributions estimated with the parametric method. For clarity the corresponding error bars are not showr
left and right dashed lines mark the borders where the solution is unique.

The following four deep levels were determined with the nonparametric method:

(1) AE; = (0.72£0.03)eV, oy = (7.96+£9.29) - 10 13cn?
(2) AE; = (0.654+0.02 eV, o, = (8.86+5.67) - 10 *2cn?
(3) AE3 = (0.63+0.02 eV, o3 = (6.27+5.24) - 10 2cn?
(4) AE; = (0.50£0.04) eV, o4 = (6.49+9.11) 10 1cn?.

The calculated deep levels are compared with results from literature in our prev
article [1]. In that article the reason for the large deviations of the estimated cross se«
is discussed as well.

The number of deep levels determined with the parametric and with the nonparam
method is quite different. But several deep levels estimated with the parametric me
have nearly the same activation energy and similar cross sections. Therefore, it seems
possible thatthe discrete levels (2)—(6) are due to an originally continuous contribution. \
the nonparametric method a continuous contribution is calculated with an average activ
energy of 0.72 eV. The levels (2)—(6) calculated with the parametric method would ac
with this activation energy within their estimated error range. The results of the Monte C
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FIG. 12. Arrhenius-plots of the relaxation times obtained from measured admittance data. (a) The contri
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tions are estimated with the parametric method and (b) with the nonparametric method.

simulations in the previous section have also shown this effect, that the parametric me

yields several discrete contributions for an originally continuous contribution.

Additionally, the model parameters are estimated with the parametric and the n
paramtric method in dependence on the temperature (Figs. 13 and 14). Both analysis n
ods yield nearly the same model parameters but the values estimated for the c@pacity
with the parametric and the nonparametric method are not quite identical. Table IV shc
the average values for the nearly temperature independent para@gte@s,, and Rys,

TABLE IV

Estimated Parameters of the Parametric and the Nonparametric

Method for Measured Admittance Data

Parametric Nonparametric
Co1[107°F] 0.75+04 0.79+0.01
Co2[10711F] 1.14+0.01 11+0.01
Ros [k2] 2.0+0.05 199+ 0.06
Vo [V] 0.822+0.009 0814+ 0.006
Eq[eV] 1.44+0.02 143+0.01
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FIG. 13. The parameters obtained from the measured admittance data in dependepi@esstirhated with
the parametric method. (a) The conductivities, Go,, and ¥ Rys. (b) The capacitie€y; andCo,.

for the potential barrie¥y, and for the energy of the band g&g. The parameters and
E, were fitted on the temperature dependent valu&yeind Gy, using the relationships
of Egs. (7a) and (7b).

The reliability of the estimated values of the both capacifigsandCy,, the resistance
Roz, and the values for the potential barrigrand the band gagy are discussed extensively
in our previous article [1].

6. CONCLUSIONS

For the analysis of measured admittance data of a Schottky diode two different metl
are compared: A parametric and a nonparametric method. The parametric method as:
discrete deep level contributions whereas with the nonparametric method continuous
tributions are supposed.

The comparison shows a great disadvantage of the parametric method to the nor
metric method. The parametric analysis is only suited for discrete contributions and ca
estimate continuous ones at all. A Monte Carlo study on simulated admittance date
shown that the parametric method is not able to estimate reliable results if a part of
deep level contribution is continuous. Even for completely discrete deep level contribut
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FIG. 14. The parameters obtained from the measured admittance data in dependepeastirhated with
the nonparametric method. (a) The conductivitBs, Go,, and ¥ Rys. (b) The capacitie€,; andCg,.

the results of the parametric method depend essentially on the number of contributi
which must be determined separately. Only if this number is determined correctly the ¢
responding results are in a good agreement with the physical properties of the exam
material.

On the contrary, the nonparametric method is suited for the estimation of discrete cor
butions as well as for continuous distributions of deep levels. In this sense nonparame
methods are superior to parametric ones. But it should be mentioned that the nonf
metric method has the disadvantage that originally discrete contributions are estimate
slightly broadened peaks in the continuous distribution. The broadening for this continu
distribution is among other influences caused by the noise of the experimental data. (
sequently, discrete peaks which are very close together could not be estimated as sey
peaks but only as a single broadened one. We think that this disadvantage is compen
by the advantage that the number of discrete contributions is obtained automatically fi
the number of peaks in the estimated continuous distribution.
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